Full Blow-up Range for Co-rotaional Wave Maps to Surfaces of Revolution

نویسنده

  • CAN GAO
چکیده

We construct blow-up solutions of the energy critical wave map equation on R → N with polynomial blow-up rate (t for blow-up at t = 0) in the case when N is a surface of revolution. Here we extend the blow-up range found by Carstea (ν > 1 2 ) based on the work by Krieger, Schlag and Tataru to ν > 0. This work relies on and generalizes the recent result of Krieger and the author where the target manifold is chosen as the standard sphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal polynomial blow up range for critical wave maps

We prove that the critical Wave Maps equation with target S2 and origin R2+1 admits energy class blow up solutions of the form u(t ,r ) =Q(λ(t )r )+ε(t ,r ) where Q : R2 → S2 is the ground state harmonic map and λ(t) = t−1−ν for any ν > 0. This extends the work [17], where such solutions were constructed under the assumption ν> 2 . Also in the later chapter, we give the necessary remarks and ke...

متن کامل

Slow Blow up Solutions for Certain Critical Wave Equations

We describe in this article two recent results [11], [12], obtained by the author jointly with W. Schlag and D. Tataru, about singular solutions for the critical wave maps equation, as well as the critical focussing semilinear wave equation. Specifically, the first result [11] establishes for the first time the conjectured formation of singularities for co-rotational wave maps into the sphere S...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Third Wave of Modernity and Two Intellectual Interpretations by Reza Davari Ardakani and Abdulkarim Soroush after Islamic Revolution

This article considers the relation between the third wave of modernity -according to Leo Straus' theory- and the intellectual discourse after Islamic revolution. After Islamic revolution and faced with third wave of modernity, intellectuals offered special interpretations. Intellectual interpretations by Reza Davari Ardakani and Abdulkarim Soroush, as prominent representatives for the third wa...

متن کامل

The University of Chicago on the Global Behavior of Wave Maps a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy Department of Mathematics by Andrew

We study wave maps equation in three distinct settings. First, we prove a small data result for wave maps on a curved background. To be specific, we consider the Cauchy problem for wave maps u : R×M → N , for Riemannian manifolds (M, g) and (N, h). We prove global existence and uniqueness for initial data, (u0, u1), that is small in the critical norm Ḣ d 2 × Ḣ d2−1(M ;TN), in the case (M, g) = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014